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11.1 Introduction

In the previous chapters, we have learn some exact inference methods
such as elimination, message passing and the junction-tree algorithm.

The Limitation

However,the computational and space complexity of the exact
inference is exponential in the tree-width.

e Computational complexity:e!ree—width
@ Space complexity:efree—width
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11.1 Introduction

Approximate Inference Technologies

In this chapter we will introduce a class of approximate inference
technologies which solve the inference problems which can be
understood as an optimization problem.

Some Common Principles

For each method, there are some common principles.

mindis(P,, Q)

@ Define a target class Q of "easy” distributions Q and then find
the "best” approximation to Pg.

@ Inference on Q rather than on Pg.
@ Same target function.
May 25,2016 4 / 61



11.1 Introduction

Approximate Inference Process

approximate

Constrained
Optimization

Inference
taskon P

optimize

Message
Passing
in graph

fixed-point
equations

Figure: Process of Approximate Inference Methods
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11.1 Introduction

Three categories of Approximate Inference Methods

In the following section, the approximate inference methods mainly
fall into three categories.

Categories of Approximate Inference Strategies

loopy belief

propagation

mean field .

expectation

propagation

Figure: Cq:use clique-tree message passing schemes on structures other
than trees(maybe graph).C,:use message propagation on clique trees with
approximate messages.Cs:generalize the mean field method originating in
statistical physics.
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11.1 Introduction

Two perspectives

Each of these algorithms can be described from two perspectives:

@ as a message passing algorithm

@ as an optimization problem consisting of an objective and a
constraint space.

Common process

@ First:a simple variant of the algorithm.
@ Then:optimization perspective on the algorithm.

o Finally:generalizations of the simple algorithm.
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem
Assume we have a factorized distribution of the form

Po(X) = 7 T] #(Uy) (1)

pcd

e Factors ¢ in ®(KT)
o Uy = Scope[p] C X (¥EHK)
Queries on the Py which include:
@ queries about marginal probabilities of variables
@ queries about the partition function Z
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem
Beliefs for cluster tree can represent a distribution.

_ [Ticy; Bi(Ci)
Po(X) = N
o (X) TTii—jees Hij(Sij)

(2)

Thus,

exact inference — search Q" that matches Pg over Q

Another description: searching for a calibrated distribution that is
as close as possible to Pgp.
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem

Definition

The relative entropy which measure the distance of P; and P, is
defined as follows:

DR 12) = Ep, [in phT)] @)

@ Non-negative
e 0 if and only if P = P;.
e Not symmetric. ID(Py||P,)! = D(P]|Py).
Two ways of projections(which to choose?)(See chapter 8.5):
e M-projection:minID(Pg||Q)
e |-projectionminID(Q||Pp) WHY?
May 25, 2016 10 / 61



11.1.1 Exact inference revisited

Casting exact inference as an optimization problem
T is clique tree of Py, given a set of beliefs

Q={Bi:ieVryU{w,:(i—j)elr} (4)

where C; denotes clusters in 7, B; denotes beliefs over C;, and Hij
denotes beliefs over S; ; of edges in T

As in definition 10.6, the set of beliefs in T defines a distribution Q
by the formula
[Ticy, Bi(Ci)

5
[T(i—jyee, 1ij(Sij) ©)

And the beliefs correspond to marginals of the distribution Q defined
by eqution 5.

Q(X) =
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem

Consider two decisions when deciding on the representation of Q:
e space of distribution(F’H LLT F1-mapf) 43 7)
e representation of these distributions(1E AR ERI A BIFH—1
£8)
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11.1.1 Exact inference revisited

The optimization problem
CTree-Optimize-KL:

Find:
Q={Bi:icVr}tu{u;:(i—j)er}
maximizing:
—D(Ql[Pp)
subject to:
wijlsijl = Z V(i—j) € &7, Vsij € Val(S;))

Ci— 1]

Y Bilc) =1VieVr
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11.1.1 Exact inference revisited

If T is an I-map of Py, then there is a unique solution to
CTree-Optimize-KL.

This optimum can be found using the exact inference algorithms we
developed in chapter 10.
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PAY

11.1.2 The Energy Functional(FE=Z k¥

@ Instead of searching-everthe-space-of-all-calibrated-€clustertrees,

we can search over a space of "simple” distributions.

@ Find an approximate one instead of eguivalent-one.Moreover, we
can design the set of distributions where we can perform
inference efficiently.
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11.1.2 The Energy Functional

D(Q||Pp) =InZ — F[Ps,Q].
where F[Pg, Q] is the energy functional

F[Po, Q] = Eg[InP(X)] + Hg(X) = ¢%1EQ[In(p] +Hg(X).
(6)

4

Proof see next page.
energy functional = energy term + entropy term

@ Energy term:the expectations of the logarithms of factors in ®.

@ Entropy term:the entropy of Q.
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11.1.3 Optimizing the Energy Functional

Proof

D(Q||Pp) = Eg [ln 1%((/?)} (relative entropy definition)

=Eg [InQ(&X) — InPp(X)] (expansion)
=Eg [InQ(&X)] —Eg [In Pp(X)] (expansion)
= —Ho(¥) —Eg [In (—H‘PE‘I’Z"’ (”4’))]
= —Hq(&X) — Eg[Ypco In¢(Uyp) — In Z] (expansion)

= —II-IQ(X)~— Ypco [EqIng(Uy)] +1InZ (expansion)

—InZ — F[Ps, Q] O

(factor form of distribution)
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11.1.3 Optimizing the Energy Functional

Problem transformation
@ Find good approximation Q
@ min Relative entropy
@ max Energy functional

Energy functional:lower bound on the logarithm of the partition

function Z, for any choice of Q.
So, inference methods <> strategies for optimizing the energy

functional.

Variational Methods: (iX >4 FF5 BJ&—FRlE 5] \GFTiEE 77 2
BOREINE B, WRE XS5, R A )8 FH 3
i)
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11.2 Exact Inference as Optimization

Variational approach and exact inference
Factored Energy Functional:

Definition
Given a cluster tree T with a set of beliefs Q and an assignment «

that maps factors in Py to clusters in 7, we define the factored
energy functional:

FlPy, Q] = ) Eciop[lny] + Y Hg(C)— ), Hy, (Si)),

ieVr ieVy (i—j)e&r
(7)

where 1; is the initial potential assigned to C;: ¢; = Hcp,:x(4>)=i¢' and
[Ec,~p,[-] denotes expectation on the value C; given the beliefs B;

All the terms are local.
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11.2 Exact Inference as Optimization

Variational approach and exact inference

Proposition

If Q is a set of calibrated beliefs for T, and Q is defined by equation
5, then

F[Py, Q] = F[Pop, Q]

Note that Inh; = Yy 4(p)—i In . Moreover, since B;(c;) = Q(c;),

we conclude that -, Ec, g, [In¢;] = ¥y Ec,_g[In¢].
It remains to show that

Hq(X) = Liey, Hp,(Ci) — Zii—jjes, Hy,;Sij-
This equality follows directly from equation 5 and theorem 10.4. [

v
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11.2 Exact Inference as Optimization

Variational approach and exact inference
Reformulating CTree-Optimize-KL(Energy functional form)

Optimization Problem

CTree-Optimize:

Find.Q = {;:i € Vr} U{,uz] (i—j)eér}
Maximizing:F [Py, Q].

Subject to:

ijlsijl = Z Bi(ci),V(i—j) € Er,Vs;; € Val(S;;) (8)
Ci— 1]
Y Bi(e)) = LVieVr (9)
¢
ﬁi(ci) > 0,Vie Vr,¢i € Val(C,-) (10)
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11.2.1 Fix-point Characterization

Lagrange optimizing

J = F|[P,Q] (11)
- Zv: Ai (Z,Bi (ci) — 1)
— L L L[] ( Y Bilei) =i [Siﬂ>/
i JEND; si; ci~si
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11.2.1 Fix-point Characterization

Lagrange optimizing

Derivation:
d
9Bi (ci) J=Ingile] =Inpie) =1 =M _je%:bi Ajsi [sif] - (12)
0

o s = M (6] + 14 Aisj [s1] + Ajsi [si] - (13)
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11.2.1 Fix-point Characterization
Lagrange optimizing

Equating each derivative to 0, rearranging terms, and exponentiating,
we get:

Bi(ci)) =exp{-1—-A} ¢i[ci] ] exp{-Ajmi[sij]}  (14)

jGNbi

wij [sij] = exp{—1}exp {—=Aisj [sij] } exp {—=Aji [sij] } (15)
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11.2.1 Fix-point Characterization

Lagrange optimizing
We define

bisj [8i] = exp {—/\i—>j [sij] — %} (16)

Rewrite the equations as

Bi(¢i) = exp {—Ai —1+ % |Nbi|} wi(ei) T 6ji[sij]  (17)

jeri

mij[sij] = 6imsj[sij] 0isi [ (18)
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11.2.1 Fix-point Characterization

Lagrange optimizing
Combining these equations with the first constraint equation:rewrite

i [si
0isj [Si,]'] = (5];_; [[sijj] (19)
ZCiNSi,]’ ﬁi (Ci)
Sji [si]
= exp {—)\i -1+ % |Nbl|}

< Y pi(e) T Oksilsial

i8S j keNb;—{j}
= constant x Y i (¢;) ]  Gkoi[sin]
Ci~Sjj keNb;—{j}
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11.2.1 Fix-point Characterization

Lagrange optimizing

A set of beliefs Q is a stationary point of CTree-Optimize if and only
if there exists a set of factors {6;,;[S;;] : (i —j) € Er} such that

Sinjoc Y Wie) [T dksilsial (20)

Ci~Si; keNb;—{j}

and moreover, we have that

Bi o« ( H 5]—>z>
JEND;

Hij = Ojsi-0isj

4
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11.2.1 Fix-point Characterization

Lagrange optimizing
@ The solution of the optimization problem
o fixed-point equations

@ solving the fixed point equations by an easy iterative approach

Wenbao Li, Songling Liu (DM Lab) INFERENCE AS OPTIMIZATION May 25, 2016 28 / 61



11.3 Propagation-Based Approximation

Message propagation in cluster graph

@ General message passing algorithm in a cluster graph.

@ Derived from a set of fixed-point equations induced by the
stationary points of an approximate energy functional.
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11.3.1 A simple example

Consider a Markov Network

(a) (b) (©

Figure 11.1 An example of a cluster graph. (a) A simple network. (b) A clique tree for the network in
(@). (c) A cluster graph for the same network.

exact inference on (b). Inference on (c).
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11.3.1 Propagation-Based Approximation

Existing problem

Different BP Run "

45 True posterior

25 flon or/argang 06

5 10 15 20
Tteration #

Figure 1.2 An example run of loopy belief propagation in the simple network of figure 1L1a, In this
run, all potentials prefer consensus assignments over nonconsensus ones. In each iteration, we perform

50 100 150 200 250 300 350 400 450 500~ message passing for all the edges in the cluster graph of figure IL1b.

Average Log KL Divergence From Exact
«
w

Two problems:

Convergence

Calibrated cluster graph : True probability distribution
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11.3.2 Cluster-graph Belief Propagation

Generalized running intersection property

Definition

We say that U/ satisfies the running intersection property if ,
whenever there is a variable X such that X € C; and X € Cj ,then
there is a single path between C; and C; for which X € S, for all
edges e in the path.

@ Must exist — Message about X flows across the cluster
containing it.
@ At most one. — Stop the cycles.
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11.3.2 Cluster-graph Belief Propagation(cont.)

4BcH2{ 48E | 5
| ——
c B

E

(2:8.c.0}F2 sipE [P

In cluster tree, RIP=S;; = C; N C;.
In cluster graph, No.
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11.3.2 Cluster-graph Belief Propagation(cont.)

Calibrated cluster graph
Calibrated Cluster graph : if for every (i — j) connecting cluster C;

and C; , we have that ZCrSi,j Bi = Zci—si,j Bj-
@ weak than calibrate cluster tree.

@ agree only on those variables in the sepset.
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How to calibrate cluster graph ?

CGraph-SP-Calibrate
Just like CTree-SP-Calibrate

) (ep 2 2p16 2 3615
|

1:4. 8B - 4: 4.0 G.S
B D [S:G,J,L,S JE,L 6:J,L,S]J'—_l;( T JL J
6.
2.B,C i)

@ Cluster graph contains loops.Not like the cluster tree, there is no
cluster ready in cluster graph.

So : initialize 6;_,; = 1 for every edge (i —j) € &y.
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CGraph-SP-Calibrate

Alg:Calibration using sum-product belief propagation in a
cluster graph

Procedure CGraph-SP-Calibrate (
@, /I Set of factors

U 1l Generalized cluster graph ® )
)

Procedure Initialize-CGraph ( Procedure SP-Message (

u i, /l sending clique

1 Initialize-CGraph 1 for each cluster C; j I veceiving clique

i WI;lellepftr?yh;; cn r;ucahhmted : i Il a(@)=i ¢‘ | | )

4 0i—j(8Si,;) — SP-Message(i. j) 3 f01: each edge (i-j) € & d’( )‘7 Ui er Nb;—{j}) “h=i
5 for each clique i 4 (i'*”‘i =1 2 ( ) ZC 1,/(

6 Bi— i~ erNb, Op—i 5 O]'—’i <1 =5

7 rotarn (3] 6 3 return 7(S;;)

Same as CGraph-BU-Calibrate.Initialize y1;; = 1.
They are instances of a general class of algorithms called
cluster-graph belief propagation, which passes messages over cluster
graphs.
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Lower costs of cluster-graph belief propagation
than running exact inference

Another example

Aip
Ay, A1 H A1, 41y

Ay Ajn A3
[(t]  [data]  [4a4)
41 422 423
(421,422 )L[ .43
Ay A2 Ay
IAZ.I s A3 l lAz.szz,z] lAz,s-As.sl
A3 432 433

A
A3, 432 }—‘M 435,433

@ Exact inference in n % n grid network(exponential in 1)
@ A round of propagations in the generalized cluster graph (linear
in the size of the grid: n?)
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11.3.3 Properties of Cluster-Graph Belief
Propagation

Cluster graph invariant(~ 2 &)

Let U be a generalized cluster graph over a set of factors ®.Consider
the set of beliefs {B;} and sepset {;;} at any iteration of
CGraph-BU-Calibrate; then

S HZEVU [ l]

Pp(X) = 21
qD( ) H(z—])eé'u]“‘z,][ 1,]] ( )

where Pp(X) = [Tpee ¢ is the unnormalized distribution defined by
D.

4
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11.3.3 Properties of Cluster-Graph Belief
Propagation

Tree Consistency

FL0EH, ARERIZRER G, RE LIEFERE DR
B2 . ATLU R BT TS EM@%%%K

T T A VR R S [ A S RS ?

TTENBMRE—EM, T EA?
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11.3.3 Properties of Cluster-Graph Belief
Propagation

Tree Consistency

Assume that T is a sub-tree of calibrated cluster graph U, we can
think of it as defining a distribution

HIGV [ 1]
Pr(X) = T 22
7(X) H(z—])EET Vz,][ z,]] (22)

If the cluster graph is calibrated, then by definition so is T . And so,
because T is a tree that satisfies the running intersection property,
we can apply theorem 10.4 , and we conclude that

Bi(Ci) = Pr(Ci) (23) |
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11.3.3 Properties of Cluster-Graph Belief
Propagation

Tree Consistency:example

A

1:4.B 44D
B D
ATl z 3CD

o Delete cluster C4 = {A, D} = A suitable cluster tree.
o B1(A,B) = Pr(A,B) = f1(A,B) # Pa(A,B)
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11.3.4 Analyzing Convergence*

Not mention

@ Cluster tree = Converge

@ Many network = Don't converge
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11.3.5 How to Construct Cluster Graphs

Compromise between cost and accuracy

RREIWLEr € FIEF TR RP IR, H BRE T4
REIH)E AT LAE RIS RE AP %0 - X EEie i ELER O 4 R ) ot
B AR o
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11.3.5 How to Construct Cluster Graphs

Compromise between cost and accuracy
For example:

[z48.cH{ 48E

‘B,C ‘E

[z:B,c,D]—D—{ 5:D,E

(4B H

|c

’2:B,C,D}—D

Figure 11.3 Two examples of generalized cluster graph for an MRF with potentials over {A, B, C'},
{B,C,D},{B,D, F},{B,E} and {D, E}.

Cluster graph U, capture the strong dependencies between B and C.

On the other hand, we have to make sure a valid cluster graph.
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11.3.5 Construct Cluster Graphs

11.3.5.1 Pairwise Markov Networks

Definition

A Pairwise Markov Networks is an undirected graph whose nodes
are X,..., Xy and each edge X; <> X is associated with a
factor(potential) ¢(X; <+ X;).(From Chapter 4.1)

For each potential, we introduce a corresponding cluster, and put
edges between the clusters that have overlapping scope. In other
words, there is an edge between the cluster C; ;) that corresponds to
the edge X; <> X; and the clusters C; and C; that correspond to the
univariate factors over X; and X;.
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Pairwise Markov Networks

Example:PMN =-cluster graph

Figure: (a)A 3*3 grid network (b)A generalized cluster graph for 3*3 grid
when viewed as pairwise MRF
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11.3.5.2 Bethe cluster graph

What is Bethe cluster graph

Big clusters(Scope of factor for each ¢ € ®) 4 univariate
clusters + edges between them

[hmﬂc]‘z&au]‘&&QFl[maEl [&QE’

lea| 28] [sc| [en] |wE] [mwF|

(a) Uy

Figure: (a) Bethe factorization.
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11.3.5.3 Beyond Marginal Probabilities

Some improvement
o Limitation of BetheCG:Lost the interaction between variables.
@ Solution one:Merge some of the large clusters. = Brings costs.
@ Solution two:Add a mediate distribution over B and C.

[I:A,B,C] [Z:B,C,D] [B:B,D,F] ‘4:B,El [5:,E|

| 64 | [7: (sc| [op]| [wE| [1:F]

(b) U
Figure: (b) Capturing interactions between A, B,C and {B,C,D}
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Some change

Approximate Bethe CG

t4sc| [280| [146D| [raBc| (280D [346D)

{4:B,C 5:4,C ] 6:C,D ’ {4:B,C [ 54 [G:C,D ]

(2) (b)

Figure: (a) Invalid (b)A way to be valid
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11.3.6 Variational Analysis

Energy Functional Review(More see 11.1)

@ Energy functional:

F[p.:p,Q] = ]EQ[IIIP(X)] +HQ(X) = Zq)IEQ[ln(P] +1HQ(X).
OIS

@ Factored energy functional(An approximation for cluster graph):

[PQMQ Z ]EC ﬁz[lnlp]—i_ Z Hﬁ )_ Z HVI] ij

icVr iceVr (i—j)e&r
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11.3.6 Variational Analysis

CTree optimization problem Review

Optimization Problem

CTree-Optimize:
Find:Q = {B;:ie Vr}U{m;: (i—j) € Er}
Maximizing:F [Py, Q].
Subject to:
]/ti,j[s,-,]-] = Z ﬁi(Ci),V(i —]) < 57’, VSZ',]‘ € Val(Si,j) (24)
Y Bi(ci) = 1LVieVr (25)
L
ﬁi(ci) > 0,Vie V']', C; € Val(C,') (26)

o’
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11.3.6 Variational Analysis

The fixed-point equations Review
The fixed-point equations:

A set of beliefs Q is a stationary point of CTree-Optimize if and only
if there exists a set of factors {6;,;[S;;] : (i —j) € Er} such that

Sinjoc Y ie) [T drsilsial (27)

Ci~Si; keNb;—{j}

and moreover, we have that

Bi o« ¢i ( I 5j—>i>

jGNbi

Hij = Ojsi-0inj

V.
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11.3.6 Variational Analysis

Why variational analysis
Cluster graph belief propagation , approximate 7 !
—
Variational analysis provides the relative proof.

Message <~ Fixed-point equations
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11.3.6 Variational Analysis

How to get the formalism:Step 1

o First, exact energy functional is hard to optimize.

@ Factored energy functional is defined by entropy of cluster and
sepset (Local information).

Approximate energy functional.
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11.3.6 Variational Analysis

How to get the formalism:Step 2
The whole space of optimized Q is hard to search the optimal
solution.

Definition
So more precisely, consider some cluster graph U ,for a distribution P
, we define Qp = {P(C;) }icy, U{P(Si;)}i—jeg,. We now define

the marigal polytope(i1%% A] #5325 [A]) of U to be

Margiu] = {Qp : P(X)} (28)

But obtaining this kind of space is very hard as exact inference.

Approximate constraint space
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11.3.6 Variational Analysis

How to get the formalism:Step 2
To avoid these problems, we perform our optimization over the local

consistency polytope( &I &k—EHI A H 5325 [H]):

Localld] = (1116)
13 l W piglsil = Yo.s, Bile) Vli=j) € &y, ¥si; € Val(S; )
{/’ ) c EM} = Z G (C,) Vie Vy
i ¢ Gile;) > Vi € Vy, ¢ € Val(Cy).

Some keywords : pseudo-marginal distributions(ff1i1% 5315 ),
calibrated

Approximate constraint space
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11.3.6 Variational Analysis

Optimization problem description

Optimization Problem

CGraph-Optimize:

Find-Q = {‘Bif eVyu {;ui,j c(i—7) € &y}
Maximizing:F[Pg, Q].

Subject to:

Q € Local[U] (29)

4

Thus, our optimization problem contains two approximations:
@ Approximate energy functional;

@ Approximate optimized variable's space(the space of
pseudo-marginals)
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11.3.6 Variational Analysis

Fix-point equations

Theorem

A set of beliefs Q is a stationary point of CGree-Optimize if and only
if for every edge (i — j) € &y there are auxiliary factors
{(Si—>]'[si,j] : (Z —]) S 8u} such that

Sinjoc Y ie) [T drsilsixl (30)

Ci~Si; keNb;—{j}

and moreover, we have that

Bi o« ¢ < I 5j—>i>

jGNbi

Hij = Ojsi-0inj

V.
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11.3.6 Variational Analysis

Convergence point and stationary point

Proposition

Q is the convergence point of applymg CGraph-SP-Calibrate(¢, U ) if
and only if Q is a stationary point of F[Pg, Q].

Proposition
At convergence of CGraph-BU-Calibrate, the set of beliefs is a
stationary point of F[Pg, Q].
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Conclusion

Take home message
@ Optimization format of inference.(Its optimal point:The
fixed-point equation)
o CGraph-SP-Calibrate/CGraph-BU-Calibrate(cluster-graph belief
propagation)

@ Equivalence property of above two process.
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Next...section 4 - 6

Next 3 parts will be presented by Songling Liu.
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