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11.1 Introduction

In the previous chapters, we have learn some exact inference methods
such as elimination, message passing and the junction-tree algorithm.

The Limitation
However,the computational and space complexity of the exact
inference is exponential in the tree-width.

Computational complexity:etree−width

Space complexity:etree−width
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11.1 Introduction

Approximate Inference Technologies
In this chapter we will introduce a class of approximate inference
technologies which solve the inference problems which can be
understood as an optimization problem.
Some Common Principles
For each method, there are some common principles.

QΡΦ 
),(min QΡdis Φ Queries

1

3 2

Define a target class Q of ”easy” distributions Q and then find
the ”best” approximation to PΦ.

Inference on Q rather than on PΦ.

Same target function.
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11.1 Introduction

Approximate Inference Process

Inference      
task on P

Constrained 
Optimization

approximate

fixed-point 
equations

optimize
Message 
Passing
in graph viewed

     as

Figure: Process of Approximate Inference Methods
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11.1 Introduction

Three categories of Approximate Inference Methods
In the following section, the approximate inference methods mainly
fall into three categories.

loopy belief 
propagation

mean field

expectation 
propagation

1C

2C
3C

Figure: C1:use clique-tree message passing schemes on structures other
than trees(maybe graph).C2:use message propagation on clique trees with
approximate messages.C3:generalize the mean field method originating in
statistical physics.
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11.1 Introduction

Two perspectives

Each of these algorithms can be described from two perspectives:

as a message passing algorithm

as an optimization problem consisting of an objective and a
constraint space.

Common process

First:a simple variant of the algorithm.

Then:optimization perspective on the algorithm.

Finally:generalizations of the simple algorithm.
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem
Assume we have a factorized distribution of the form

PΦ(X ) =
1
Z ∏

φ∈Φ
φ(Uφ) (1)

Factors φ in Φ(因子)

Uφ = Scope[φ] ⊆ X (辖域)

Queries on the PΦ which include:

queries about marginal probabilities of variables

queries about the partition function Z
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem
Beliefs for cluster tree can represent a distribution.

P̃Φ(X ) =
∏i∈VT βi(Ci)

∏(i−j)∈ET µi,j(Si,j)
(2)

Thus,
exact inference → search Q∗ that matches PΦ over Q
Another description: searching for a calibrated distribution that is
as close as possible to PΦ.
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem

Definition
The relative entropy which measure the distance of P1 and P2 is
defined as follows:

D(P1||P2) = EP1

[
ln

P1(X )

P2(X )

]
. (3)

Non-negative

0 if and only if P1 = P2.

Not symmetric. D(P1||P2)! = D(P2||P1).

Two ways of projections(which to choose?)(See chapter 8.5):

M-projection:min D(PΦ||Q)

I-projection:min D(Q||PΦ) WHY?
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem
T is clique tree of PΦ, given a set of beliefs

Q = {βi : i ∈ VT } ∪ {µi,j : (i− j) ∈ ET } (4)

where Ci denotes clusters in T , βi denotes beliefs over Ci, and µi,j
denotes beliefs over Si,j of edges in T .

As in definition 10.6, the set of beliefs in T defines a distribution Q
by the formula

Q(X ) =
∏i∈VT βi(Ci)

∏(i−j)∈ET µi,j(Si,j)
(5)

And the beliefs correspond to marginals of the distribution Q defined
by eqution 5.
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11.1.1 Exact inference revisited

Casting exact inference as an optimization problem

Consider two decisions when deciding on the representation of Q:

space of distribution(所有以T为I-map的分布)

representation of these distributions(作为校准的团置信的一个
集合)
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11.1.1 Exact inference revisited

The optimization problem
CTree-Optimize-KL:
Find:

Q = {βi : i ∈ VT } ∪ {µi,j : (i− j) ∈ ET }
maximizing:

−D(Q||PΦ)

subject to:

µi,j[si,j] = ∑
Ci−Si,j

βi(ci), ∀(i− j) ∈ ET , ∀si,j ∈ Val(Si,j)

∑
ci

βi(ci) = 1, ∀i ∈ VT
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11.1.1 Exact inference revisited

Theorem
If T is an I-map of PΦ, then there is a unique solution to
CTree-Optimize-KL.

This optimum can be found using the exact inference algorithms we
developed in chapter 10.
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11.1.2 The Energy Functional(能量泛函)

Instead of searching over the space of all calibrated cluster trees,
we can search over a space of ”simple” distributions.

Find an approximate one instead of equivalent one.Moreover, we
can design the set of distributions where we can perform
inference efficiently.
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11.1.2 The Energy Functional

Theorem

D(Q||PΦ) = ln Z− F[P̃Φ, Q].
where F[P̃Φ, Q] is the energy functional

F[P̃Φ, Q] = EQ[ln P̃(X )] + HQ(X ) = ∑
φ∈Φ

EQ[ln φ] + HQ(X ).

(6)

Proof see next page.
energy functional = energy term + entropy term

Energy term:the expectations of the logarithms of factors in Φ.

Entropy term:the entropy of Q.
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11.1.3 Optimizing the Energy Functional

Proof

Proof.

D(Q||PΦ) = EQ

[
ln Q(X )

PΦ(X )

]
(relative entropy definition)

= EQ [ln Q(X )− ln PΦ(X )] (expansion)
= EQ [ln Q(X )]−EQ [ln PΦ(X )] (expansion)

= −HQ(X )−EQ

[
ln
(

∏φ∈Φ φ(Uφ)

Z

)]
(factor form of distribution)

= −HQ(X )−EQ[∑φ∈Φ ln φ(Uφ)− ln Z] (expansion)

= −HQ(X )−∑φ∈Φ
[
EQ ln φ(Uφ)

]
+ ln Z (expansion)

= ln Z− F[P̃Φ, Q]
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11.1.3 Optimizing the Energy Functional

Problem transformation

Find good approximation Q
min Relative entropy

max Energy functional

Energy functional:lower bound on the logarithm of the partition
function Z, for any choice of Q.
So, inference methods ⇔ strategies for optimizing the energy
functional.
Variational Methods:(这个名字指的是一种通过引入新的变分参
数来增加自由度，然后优化这些参数，从而解决问题的通用策
略。)
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11.2 Exact Inference as Optimization

Variational approach and exact inference
Factored Energy Functional:

Definition
Given a cluster tree T with a set of beliefs Q and an assignment α
that maps factors in PΦ to clusters in T , we define the factored
energy functional:

F̃[P̃Φ, Q] = ∑
i∈VT

ECi∼βi [ln ψ] + ∑
i∈VT

Hβi(Ci)− ∑
(i−j)∈ET

Hµi,j(Si,j),

(7)
where ψi is the initial potential assigned to Ci: ψi = ∏φ,α(φ)=i φ, and

ECi∼βi [·] denotes expectation on the value Ci given the beliefs βi

All the terms are local.
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11.2 Exact Inference as Optimization

Variational approach and exact inference

Proposition
If Q is a set of calibrated beliefs for T , and Q is defined by equation
5, then

F̃[P̃Φ, Q] = F̃[P̃Φ, Q]

Proof.
Note that ln ψi = ∑φ,α(φ)=i ln φ. Moreover, since βi(ci) = Q(ci),

we conclude that ∑i ECi−βi [ln ψi] = ∑φ ECi−Q[ln φ].
It remains to show that
HQ(X ) = ∑i∈VT Hβi(Ci)−∑(i−j)∈ET Hµi,j Si,j.
This equality follows directly from equation 5 and theorem 10.4.
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11.2 Exact Inference as Optimization

Variational approach and exact inference
Reformulating CTree-Optimize-KL(Energy functional form).

Optimization Problem
CTree-Optimize:
Find:Q = {βi : i ∈ VT } ∪ {µi,j : (i− j) ∈ ET }.
Maximizing:F̃[P̃Φ, Q].
Subject to:

µi,j[si,j] = ∑
Ci−Si,j

βi(ci), ∀(i− j) ∈ ET , ∀si,j ∈ Val(Si,j) (8)

∑
ci

βi(ci) = 1, ∀i ∈ VT (9)

βi(ci) ≥ 0, ∀i ∈ VT , ci ∈ Val(Ci) (10)
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11.2.1 Fix-point Characterization

Lagrange optimizing

J = F̃
[
P̃Φ, Q

]
(11)

− ∑
i∈VT

λi

(
∑
ci

βi (ci)− 1

)

− ∑
i

∑
j∈Nbi

∑
si,j

λj→i
[
si,j
] (

∑
ci∼si,j

βi (ci)− µi,j
[
si,j
])

,
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11.2.1 Fix-point Characterization

Lagrange optimizing
Derivation:

∂

∂βi (ci)
J = ln ψi [ci]− ln βi (ci)− 1− λi− ∑

j∈Nbi

λj→i
[
si,j
]

. (12)

∂

∂µi,j
[
si,j
]J = ln µi,j

[
si,j
]
+ 1 + λi→j

[
si,j
]
+ λj→i

[
si,j
]

. (13)
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11.2.1 Fix-point Characterization

Lagrange optimizing
Equating each derivative to 0, rearranging terms, and exponentiating,
we get:

βi (ci) = exp {−1− λi}ψi [ci] ∏
j∈Nbi

exp
{
−λj→i

[
si,j
]}

(14)

µi,j
[
si,j
]
= exp {−1} exp

{
−λi→j

[
si,j
]}

exp
{
−λj→i

[
si,j
]}

(15)
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11.2.1 Fix-point Characterization

Lagrange optimizing
We define

δi→j
[
si,j
]
= exp

{
−λi→j

[
si,j
]
− 1

2

}
(16)

Rewrite the equations as

βi (ci) = exp
{
−λi − 1 +

1
2
|Nbi|

}
ψi (ci) ∏

j∈Nbi

δj→i
[
si,j
]

(17)

µi,j
[
si,j
]
= δi→j

[
si,j
]

δj→i
[
si,j
]

(18)
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11.2.1 Fix-point Characterization

Lagrange optimizing
Combining these equations with the first constraint equation:rewrite

δi→j
[
si,j
]

=
µi,j
[
si,j
]

δj→i
[
si,j
] (19)

=
∑ci∼si,j

βi (ci)

δj→i
[
si,j
]

= exp
{
−λi − 1 +

1
2
|Nbi|

}
× ∑

ci∼si,j

ψi (ci) ∏
k∈Nbi−{j}

δk→i [si,k]

= constant× ∑
ci∼si,j

ψi (ci) ∏
k∈Nbi−{j}

δk→i [si,k]
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11.2.1 Fix-point Characterization

Lagrange optimizing

Theorem
A set of beliefs Q is a stationary point of CTree-Optimize if and only
if there exists a set of factors {δi→j[Si,j] : (i− j) ∈ ET } such that

δi→j ∝ ∑
ci∼si,j

ψi (ci) ∏
k∈Nbi−{j}

δk→i [si,k] (20)

and moreover, we have that

βi ∝ ψi

(
∏

j∈Nbi

δj→i

)
µi,j = δj→i · δi→j

Wenbao Li, Songling Liu (DM Lab) INFERENCE AS OPTIMIZATION May 25, 2016 27 / 61



11.2.1 Fix-point Characterization

Lagrange optimizing

The solution of the optimization problem

fixed-point equations

solving the fixed point equations by an easy iterative approach
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11.3 Propagation-Based Approximation

Message propagation in cluster graph

General message passing algorithm in a cluster graph.

Derived from a set of fixed-point equations induced by the
stationary points of an approximate energy functional.
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11.3.1 A simple example

Consider a Markov Network

exact inference on (b). Inference on (c).
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11.3.1 Propagation-Based Approximation

Existing problem

Two problems:

Convergence

Calibrated cluster graph : True probability distribution
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11.3.2 Cluster-graph Belief Propagation

Generalized running intersection property

Definition
We say that U satisfies the running intersection property if ,
whenever there is a variable X such that X ∈ Ci and X ∈ Cj ,then
there is a single path between Ci and Cj for which X ∈ Sc for all
edges e in the path.

Must exist → Message about X flows across the cluster
containing it.

At most one. → Stop the cycles.
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11.3.2 Cluster-graph Belief Propagation(cont.)

In cluster tree, RIP⇒ Si,j = Ci ∩ Cj.
In cluster graph, No.
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11.3.2 Cluster-graph Belief Propagation(cont.)

Calibrated cluster graph
Calibrated Cluster graph : if for every (i− j) connecting cluster Ci
and Cj , we have that ∑Ci−Si,j

βi = ∑Cj−Si,j
β j.

weak than calibrate cluster tree.

agree only on those variables in the sepset.
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How to calibrate cluster graph ?

CGraph-SP-Calibrate
Just like CTree-SP-Calibrate

Cluster graph contains loops.Not like the cluster tree, there is no
cluster ready in cluster graph.

So : initialize δi→j = 1 for every edge (i− j) ∈ EU .
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CGraph-SP-Calibrate

Alg:Calibration using sum-product belief propagation in a
cluster graph

Same as CGraph-BU-Calibrate.Initialize µi,j = 1.
They are instances of a general class of algorithms called
cluster-graph belief propagation, which passes messages over cluster
graphs.
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Lower costs of cluster-graph belief propagation

than running exact inference

Another example

Exact inference in n ∗ n grid network(exponential in n)

A round of propagations in the generalized cluster graph (linear
in the size of the grid: n2)
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11.3.3 Properties of Cluster-Graph Belief

Propagation

Cluster graph invariant(不不不变变变量量量)

Theorem
Let U be a generalized cluster graph over a set of factors Φ.Consider
the set of beliefs {βi} and sepset {µi,j} at any iteration of
CGraph-BU-Calibrate; then

P̃Φ(X ) =
∏i∈VU βi[Ci]

∏(i−j)∈EU µi,j[Si,j]
(21)

where P̃Φ(X ) = ∏φ∈Φ φ is the unnormalized distribution defined by
Φ.
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11.3.3 Properties of Cluster-Graph Belief

Propagation

Tree Consistency
第10章中，在校准的聚类树中，聚类上的置信是联合分布的边缘
概率。可以从中读出所关心变量的边缘的概率。
这是否在校准的聚类图中也成立呢？
计算的概率是一个近似，近似质量如何？
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11.3.3 Properties of Cluster-Graph Belief

Propagation

Tree Consistency

Theorem
Assume that T is a sub-tree of calibrated cluster graph U , we can
think of it as defining a distribution

PT (X ) =
∏i∈VT βi[Ci]

∏(i−j)∈ET µi,j[Si,j]
(22)

If the cluster graph is calibrated, then by definition so is T . And so,
because T is a tree that satisfies the running intersection property,
we can apply theorem 10.4 , and we conclude that

βi(Ci) = PT (Ci) (23)
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11.3.3 Properties of Cluster-Graph Belief

Propagation

Tree Consistency:example

Delete cluster C4 = {A, D} ⇒ A suitable cluster tree.

β1(A, B) = PT (A, B)⇒ β1(A, B) 6= PΦ(A, B)
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11.3.4 Analyzing Convergence*

Not mention

Cluster tree ⇒ Converge

Many network ⇒ Don’t converge
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11.3.5 How to Construct Cluster Graphs

Compromise between cost and accuracy

聚类图的结构确定算法所执行的传播步骤，并且因此确定了什么
类型的信息可以在传播的过程中传递。这些选择直接对结果的质
量产生影响。
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11.3.5 How to Construct Cluster Graphs

Compromise between cost and accuracy
For example:

Cluster graph    U2       capture the strong dependencies between B and C.

On the other hand, we have to make sure a valid cluster graph.
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11.3.5 Construct Cluster Graphs

11.3.5.1 Pairwise Markov Networks

Definition
A Pairwise Markov Networks is an undirected graph whose nodes
are X1, ..., Xn and each edge Xi ↔ Xj is associated with a
factor(potential) φ(Xi ↔ Xj).(From Chapter 4.1)

For each potential, we introduce a corresponding cluster, and put
edges between the clusters that have overlapping scope. In other
words, there is an edge between the cluster C(i,j) that corresponds to
the edge Xi ↔ Xj and the clusters Ci and Cj that correspond to the
univariate factors over Xi and Xj.
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Pairwise Markov Networks

Example:PMN ⇒cluster graph

Figure: (a)A 3*3 grid network (b)A generalized cluster graph for 3*3 grid
when viewed as pairwise MRF
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11.3.5.2 Bethe cluster graph

What is Bethe cluster graph

Big clusters(Scope of factor for each φ ∈ Φ) + univariate
clusters + edges between them

Figure: (a) Bethe factorization.

.
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11.3.5.3 Beyond Marginal Probabilities

Some improvement

Limitation of BetheCG:Lost the interaction between variables.
Solution one:Merge some of the large clusters. ⇒ Brings costs.
Solution two:Add a mediate distribution over B and C.

Figure: (b) Capturing interactions between A, B, C and {B, C, D}

.
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Some change

Approximate Bethe CG

Figure: (a) Invalid (b)A way to be valid

.
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11.3.6 Variational Analysis

Energy Functional Review(More see 11.1)

Energy functional:

F[P̃Φ, Q] = EQ[ln P̃(X )]+HQ(X ) = ∑
φ∈Φ

EQ[ln φ]+HQ(X ).

Factored energy functional(An approximation for cluster graph):

F̃[P̃Φ, Q] = ∑
i∈VT

ECi−βi [ln ψ]+ ∑
i∈VT

Hβi(Ci)− ∑
(i−j)∈ET

Hµi,j(Si,j),
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11.3.6 Variational Analysis

CTree optimization problem Review

Optimization Problem
CTree-Optimize:
Find:Q = {βi : i ∈ VT } ∪ {µi,j : (i− j) ∈ ET }.
Maximizing:F̃[P̃Φ, Q].
Subject to:

µi,j[si,j] = ∑
Ci−Si,j

βi(ci), ∀(i− j) ∈ ET , ∀si,j ∈ Val(Si,j)(24)

∑
ci

βi(ci) = 1, ∀i ∈ VT (25)

βi(ci) ≥ 0, ∀i ∈ VT , ci ∈ Val(Ci) (26)
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11.3.6 Variational Analysis

The fixed-point equations Review
The fixed-point equations:

Theorem
A set of beliefs Q is a stationary point of CTree-Optimize if and only
if there exists a set of factors {δi→j[Si,j] : (i− j) ∈ ET } such that

δi→j ∝ ∑
ci∼si,j

ψi (ci) ∏
k∈Nbi−{j}

δk→i [si,k] (27)

and moreover, we have that

βi ∝ φi

(
∏

j∈Nbi

δj→i

)
µi,j = δj→i · δi→j
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11.3.6 Variational Analysis

Why variational analysis

Cluster graph belief propagation , approximate ? !

⇒
Variational analysis provides the relative proof.

Message ⇐ Fixed-point equations
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11.3.6 Variational Analysis

How to get the formalism:Step 1

First, exact energy functional is hard to optimize.

Factored energy functional is defined by entropy of cluster and
sepset (Local information).

Approximate energy functional.
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11.3.6 Variational Analysis

How to get the formalism:Step 2
The whole space of optimized Q is hard to search the optimal
solution.

Definition
So more precisely, consider some cluster graph U ,for a distribution P
, we define QP = {P(Ci)}i∈VU ∪ {P(Si,j)}i−j∈EU . We now define

the marigal polytope(边缘可剖分空间) of U to be

Marg[U ] = {QP : P(X )} (28)

But obtaining this kind of space is very hard as exact inference.

Approximate constraint space
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11.3.6 Variational Analysis

How to get the formalism:Step 2
To avoid these problems, we perform our optimization over the local
consistency polytope(局部一致的可剖分空间):

Some keywords : pseudo-marginal distributions(伪边缘分布),
calibrated

Approximate constraint space
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11.3.6 Variational Analysis

Optimization problem description

Optimization Problem
CGraph-Optimize:
Find:Q = {βi : i ∈ VU} ∪ {µi,j : (i− j) ∈ EU}.
Maximizing:F̃[P̃Φ, Q].
Subject to:

Q ∈ Local[U ] (29)

Thus, our optimization problem contains two approximations:

Approximate energy functional;

Approximate optimized variable’s space(the space of
pseudo-marginals)
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11.3.6 Variational Analysis

Fix-point equations

Theorem
A set of beliefs Q is a stationary point of CGree-Optimize if and only
if for every edge (i− j) ∈ EU there are auxiliary factors
{δi→j[Si,j] : (i− j) ∈ EU} such that

δi→j ∝ ∑
ci∼si,j

ψi (ci) ∏
k∈Nbi−{j}

δk→i [si,k] (30)

and moreover, we have that

βi ∝ φi

(
∏

j∈Nbi

δj→i

)
µi,j = δj→i · δi→j
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11.3.6 Variational Analysis

Convergence point and stationary point

Proposition

Q is the convergence point of applying CGraph-SP-Calibrate(φ,U ) if
and only if Q is a stationary point of F̃[P̃Φ, Q].

Proposition
At convergence of CGraph-BU-Calibrate, the set of beliefs is a
stationary point of F̃[P̃Φ, Q].
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Conclusion

Take home message

Optimization format of inference.(Its optimal point:The
fixed-point equation)

CGraph-SP-Calibrate/CGraph-BU-Calibrate(cluster-graph belief
propagation)

Equivalence property of above two process.
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Next...section 4 - 6

Next 3 parts will be presented by Songling Liu.
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